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STABILITY OF THE CYLINDRICAL SHELL 

OF VARIABLE CURVATURE* 

By K .  Marguerre 

Abstract: The report  i s  a f i rs t  attempt t o  devise a calculat ion method 
f o r  representing the buckling behavior of cy l indr ica l  s h e l l s  
of variable curvature. The problem occurs, f o r  instance, i n  
dimensioning wing noses, the s t a b i l i t y  behavior of which i s  
decisively influenced by the  v a r i a b i l i t y  of curvature. The 
calculation i s  made possible by simplifying the s t a b i l i t y  
equations (permissible f o r  the s h e l l  of small curvature) and 
by assuming t h a t  the curvature as a function of the a r c  
length s can be represented by a very few Fourier terms. 
We evaluated the formulas f o r  the special  case of an e l l i p s e -  
l i k e  half oval with an axis  r a t i o  
sion i n  longitudinal direction, shear, and a combination of 
shear and compression. However, the r e s u l t s  can a l s o  be 
applied approximately t o  an unsymmetrical oval-shell  segment 
under compression, shear, and bending so t h a t  the numerical 
values contained i n  the diagrams 10 t o  12  represent d i r e c t l y  
dimensioning data f o r  the wing nose. 
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1. INTRODUCTION 

So far, only t h e  s h e l l  s t a b i l i t y  theory f o r  sphere and c i r cu la r  
cylinder has been developed t o  include formulas f o r  p rac t i ca l  application. 
Recently, the  designs i n  a i rplane construction drew a t t en t ion  a l so  t o  
other  shell types; however, due t o  the grea t  mathematical d i f f i c u l t i e s  
opposing a s t a b i l i t y  theory of complicated s h e l l  forms, it w a s  attempted 
here t o  approximate ac tua l  s h e l l s  by c i rcu lar  cylinders.  Thus it i s  
possible,  f o r  instance, t o  calculate  (with good approximation) a monocoque 
fuselage s t i f fened  by s t r inge r s  as if it were joined together from a 
la rge  number of c i rcu lar -cy l indr ica l  s t r i p s  ( s h e l l  segments) . For the 
ca lcu la t ion  of wing skins,  one may use an  approximation of the  buckling 
formulas f o r  the short  circular-cylinder she l l ;  t he  respective theory may 
be regarded as completed by Kromm' s1 invest igat ions.  
however, where the theory of the c i rcu lar  cylinder does not suf f ice .  A . 
wing nose, fo r  instance, is  usually developed as a s o r t  of half  oval 
which i s  supported by a strong spar on t h e  open side ( f i g .  1). The sta- 

of t h e  curvature. It i s  not permissible t o  determine the  c r i t i c a l  com- 
pressive load as i n  the  case o f  the ci rcular-cyl indrical  s h e l l  from a 
"mean value" of the curvature, since the weakening e f f e c t  on the  s h e l l  
of regions of  s m a l l  curvature very considerably exceeds the  s t i f f en ing  
e f f e c t  of regions of l a rge r  curvature. 
even advisable t o  regard, i n  case of wide she l l s  under compression, the 
minimum curvature alone as decis ive f o r  the  buckling l i m i t . )  

Cases ex i s t ,  

b i l i t y  behavior of such a s h e l l  i s  decisively affected by the  v a r i a b i l i t y  b 

(For rough calculat ion,  it i s  

The mathematical d i f f i c u l t i e s  opposing the theo re t i ca l  ipvest igat ion 
of cy l ind r i ca l  s h e l l s  of var iable  curvature exceed those a r i s iug  i n  the 
case of the  s h e l l  of constant curvature; however, on the other hand, they 
a re  not of fundamental character for the i n f i n i t e l y  long s h e l l ,  Lhe 
curvature va r i a t ion  of which over the arc length s may be rt-presented 
by a s ine  series. The present investigation gives the general theory of 
such s h e l l s  and evaluates the calculat ion r e s u l t s  i n  pa r t i cu la r  f o r  the  

'Kromm, A .  : Knickfestigkeit  g e k r h t e r  P l a t t ens t r e i f en  unter  
Schub- und Druckkraften (Resistance t o  Buckling of a Curved P la t e  S t r i p  
Under Shear and Compression). 
forschung, p. 832. 

Jahrbuch 1940 der deutschen Luf t f ah r t -  

f 
w 
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w i n g  nose i n  the  form of a symmetrical half  oval. The following loads 
are considered: compression i n  ax ia l  d i rec t ion  of t h e  cy l indr ica l  she l l ,  
shear ( tors ion) ,  a n d  t he  combination of both. 

2. TAE STABILITY EQUATIONS OF THE CYLINDRICAL SIIELL. THEIR 

SOLUTION I N  THE SPECIAL CASE OF THE COMPRESSED 

SHELL OF CONSTANT CURVATURE 

The shell segment we are going t o  inves t iga te  i s  an intermediate 
between the f la t  p la te  and the t rue  she l l ;  it owes p a r t  of i t s  load 
capacity t o  the  reinforcement by the longitudinal-edge s t i f fen ing8  ( l i k e  
the f la t  p l a t e ) ,  par t ,  however, a l s o  t o  the  s t i f f en ing  produced by the  
curvature ( the  curvature prevents a bending without s t re tch ing  of t he  
median surface) .  Thus the s t a b i l i t y  equations of the  cylinder theory 
are buck l i r i  d i f f e r e n t i a l  equations of the s h e l l  segment; however, t h e i r  
solut ions have t o  be adapted t o  the  boundary conditions a t  the  edges 
s = constant. 

The two s t a b i l i t y  equations of the t h i n  cy l ind r i ca l  s h e l l  are2 

I 
E A A@ - R wXx = 0 

1 
Xy 

A Aw + gXx = -awXx + 2TW 
E t 2  

12(1 - v2) 

where @ 
s t r e s ses  addi t ional ly  or iginat ing i n  buckling, according t o  

i s  the  s t r e s s  function from which one obtains three  "membrane" 

u . i s  the  c r i t i c a l  compressive s t ress  (hence the  minus s ign  i n  equa- 
t i o n  ( 2 . 1 ) ) ,  T the  c r i t i c a l  shearing s t r e s s ;  t he  remaining designations 
may be found i n  f igure 2 which represents a s h e l l  segment. The indices  

'Compare f o r  instance K .  Marguerre: Z u r  Theorie der geldmmtek 
P l a t t e .  . ., Jahrbuch 1939 d e r  deutschen Luftfahrtforschung, p.  1413. 



4 NACA TM 1302 

appearing with @ and w ind ica te  the  respective der ivat ives  with 
respec t  t o  x or  s. The equations each d i f f e r  from the  respective 

d isk  o r  plate  equation by the   term. 
coupled with one another, and t h i s  i s  the  reason f o r  the  mathematical 
d i f f i c u l t y  of the  s h e l l  problem. The equations (2.1) r e s u l t  from the  
very complicated "exact" s h e l l  equations3 by r ad ica l  s implif icat ion.  
These simplifications are physically j u s t i f i e d  under the  presupposition 
t h a t  t h e  she l l  e i t h e r  has only very s l i g h t  curvature? (R >>U) or  a t  
least  is ,  i n  buckling, subdivided in to  so  many waves t h a t  the  wave length 
i n  the  circumferential d i rec t ion  i s  small compared t o  the  radius of 
curvature. If this presupposition i s  not s a t i s f i ed ,  the  result i s  t o  a 
c e r t a i n  extent problematical; however, the  numerous careful  invest igat ions 
concerning the  buckling of a p l a t e  of constant curvature6 have shown t h a t  
t he  e r rors  a r i s i n g  from the  s implif icat ion of the equations a re  not of 
a type t o  endanger the  technical  usefulness of the results. 

1 
By precisely t h i s  term they are  

I n  t h i s  repor t  we consider only s h e l l s  t h a t  are so long that the  
Then e f f e c t  of end constraint  on the buckling load can be neglected. 

the  s t resses  and displacements are purely per iodical  i n  x, and f o r  
m 
2 7 = 0, i n  par t icu lar ,  d i r e c t l y  proportional t o  s i n  -, with the wave 

length 2 ,  which i s  small compared t o  the  s h e l l  length L, remaining 
open at  f i r s t .  If w e  put 

- 
RX 
2' 6 = 6 s i n  T, Rx w = v sin 

t h e  p a r t i a l  equations (2.1) a r e  transformed in to  t o t a l  equations (bars  
now signify der ivat ives  with respect t o  s)  

(2.1') 

3Fliigge: S t a t i k  und Dynamik der Schalen ( S t a t i c s  and dynamics of 
s h e l l s ) ,  Berl in  1934, p. lgl. 

4A few notes on t h i s  can be found i n  K. Marguerre's " D e r  Einf luss  
der  Lagerungsbedingungen . . .I' (The influence of t h e  arrangement condi- 
t i o n s  . . .). Jahrbuch 1940 der deutschen Luftfahrtforschung, p. 867. 

5A. Kromm: Die S tab i l i t a t sgrenze  eines  g e k r b t e n  P la t tens t re i fens ,  
(The s t a b i l i t y  l i m i t  of a curved p l a t e  s t r i p ) ,  Luftf.-Forschg. 1938, 
p. 517 f f .  

%e name i n  par t icu lar :  
. Flugge (footnote 3) 

Timoshenko: 
Kromm (footnote 1, p. 2)  
Donnell: Thin Shel l  Theory. Proc. of the 5 th  I n t e r .  C o n g r .  of 

Theory of Elast ic  S tab i l i t y ,  Chapter IX 

Appl. Mech., Cambridge 1938, p. 66. 
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The equations (2 .1 ' )  are l i nea r  and homogeneous i n  the  unknowns w 
and and contain the var iable  quantity 
in to  a system of a n  i n f i n i t e  number of equations f o r  the coef f ic ien ts  of 
a Fourier expression i f  
polynomial, and if  t h e  support a t  the longi tudinal  edges s = 0, s = U 
i s  such t h a t  by a Fourier expression the  boundary conditions can, term by 
term, be s a t i s f i e d .  

1 /R;  they can be converted 

1 /R  (o r  R )  can be represented by a Fourier 

We consider f i r s t  the cylinder of constant curvature because i n  t h i s  
simple special  case the  t r a i n  of thought leading t o  the  solut ion i s  out- 
l ined  more c l ea r ly  than i n  the  general case; simultaneously, we have the  
opportunity of introducing the abbreviations which are expedient f o r  the  
la ter  ca lcu la t ion  i n  an eas i ly  surveyable form. 

I f  we put 

t i = f a , s i n n -  I[S 

U n=l 

two equation systems l i n e a r  and homogeneous i n  afl and An a r e  formed 
from (2.1' ) which with the  abbreviation 

u/2 = p (2.3) 

may be wr i t ten  

q 3 2  + 
U2 

n2)2An t E p2an = 0 

E t 2  

u2 
J 

For 1 / R  = constant = l / R o ,  only one n occurs i n  any equation, so 
t h a t  t he  system i s  broken down i n t o  p a i r s  of equations only; calculat ing 
An from the  f irst  equation and introducing it i n t o  t h e  second, we obtain 
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- 1 

kn 6 P2 
- _ -  

a i  X=4,-= 
E t  u 6 

it i s  wri t ten i n  t h e  s t i l l  more compressed form 

(2 .6 ' )  1 - +  k, - X = 0 
kn 

I n  equation (2.6) t he  wave length i s  s t i l l  open i n  the  x-direction 

Thus, there  is, i n  addi t ion t o  equation (2.6) o r  (2 .6 ' )  

(that is ,  

minimum value. 

- 0 o r  t he  condition - - 

= y). It adjusts  i t s e l f  so t h a t  u (or X)  assumes t h e  

da 
dP 

(2 .7)  
dX 

- 
~ 

82 + n2)' 12(1  - v ~ ) u '  u +  12(1  - ~ 2 )  ~4 P2 an = 0 
K2E t2 IT4 Ro2t2  ( P 2  + n2)2 

The vanishing of the  fac tor  of 
With the  abbreviations 

an character izes  the  c r i t i c a l  s t a t e .  

12(1  - v2) u4 J 
u ) =  

,4 R o 2 t 2  

( 2 . 5 )  

the  equation for buckling (by which the  eigen-value 
reads 

a i s  determined) 

I With the  abbreviations 
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From equations (2.6)  and (2.7) it follows t h a t  

) f o r  GS. 4n* ( I=  a * n 2 + -  ( 16n2 
CD P = n  

J or  respectively Kn = 1 L = 2  

The simple expression (2.2)  i s  usuable only i f  a t  the longitudinal 
edges s = 0, s = U the equations 

w = 0, wss = 0, N, E = 0, EU E (flSs - .fin) dx = 0 ( 2 . 9 )  J 

are  prescribed as  boundary conditions, t h a t  is, if  the edge supports 
a r e  developed i n  such a manner t h a t  they o f fe r  a very large resis tance 
t o  a displacement of the sheet i n  rad ia l  and a x i a l  direction, a very 
small resis tance t o  a displacement in  hoop d i rec t ion  and t o  a tors ion.  
For t h e  f'urther calculation, w e  sha l l  assume the  boundary condi- 
t ions  (2.9) t o  be sa t i s f i ed .  
of the  boundary condition f o r  the  s t resses  and displacements i n  longi- 
tud ina l  and hoop direct ion ( thus re la t ive  t o  @) can be shown t o  have 
almost no e f f ec t  on the  magnitude of c r i t i c a l  load.8 
with high probability, t o  the  cylinder of variable curvature. For  if- 
the  edge terms are  arranged i n  the  more strongly curved region, they 
a re  p rac t i ca l ly  without any influence because i n  t h i s  region the  s h e l l  
buckles in to  many small waves so  t ha t  it does not matter a t  what point 
exactly the  node l i nes  are enforced; and i f  the  s t i f fen ings  (as i n  the  
case of the  wing nose) support the region of small curvature, it does 
become important whether the  s h e l l  I s  simply supported o r  clamped 
(w-conditions), but it i s  qui te  unimportant what happens i n  the  two 

For the c i r cu la r  cylinder, a modification 

The same applies, 

7If  one s e t s  i n  the second a-formula the  notations abbreviated i n  
V = 0.3 equation ( 2 . 5 ) ,  one obtains with 

formula f o r  buckling u = - R '  

t he  well-known cylinder 
0 . 6 ~ t  

a K. Marguerre; compare f igure 6 of footnote 4, page 4. 
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1 
other  directions,  because f o r  a f l a t  s h e l l  ( s imi l a r  t o  a p l a t e )  la rge  
r a d i a l  displacements 
ments v and u. Moreover, t he  more important9 of t h e  two assumptions, .) 

Ns = 0 (bending sof t  supports i n  hoop direct ion) ,  l i e s  on t h e  safe  s ide.  

w produce only very s m a l l  hoop and axial displace- 

3. THE BUCKLING DETERMINANT OF COMPRESSED 

SHELL OF VARIABLE CURVATUFZ 

If the  curvature 1 / R  can be represented by a Fourier polynomial of 
I+ terms10 

2r”ns I = ~ ( 1 +  2c2 cos - 2ns + 254 cos - 4 n s  + ... 25,, cos -) 
R %  U U U 

r* 2rns 

r=l U (3.1) 

2rns 
U 

cos - d s  = 0, l / R o  i s  ,,,erein t h e  ar i thmetic  mean (because 

of t he  curvature), we may, i n  order t o  solve equation (2 .1’ ) ,  again 
s tar t  from the  Fourier expression (2.2) which term by term s a t i s f i e s  
t he  boundary conditions (2 .9 ) .  We obtain 

1 ns E 7lS 2 
~ ~ ( p 2  + n2)2An s i n  n - + - p 2 ~ & n  s i n  n - = o 
U2 U R  U 

r[S s i n  n - = 0 U 
3 

90nly v (not  u) i s  d i r ec t ly  coupled with w over t he  hoop 
6v w s t r a i n  = - + - 
6 s  R’ 

1 1  T1S - = - s i n  - ”The equations of buckling f o r  a s imi la r  case: 
R %  U 

can be found i n  the  yearbook report  of  t h e  author quoted before.  
(Compare footnote 4, p .  4 . )  
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whereby 1 / R  has t o  be substi tuted according t o  equation (3.1).  On the  
basis of the  trigonometric ident i ty  

nns ( n  + 2 r ) n s  + sin ( n  - 2r)ns  
U U 

s i n  - = s i n  2rns 2 cos - U U ( 3 . 3 )  

each of the  two equations may be writ ten i n  the  form of a s b p l e  s ine 
ser ies :  

1 

c 

c’ 

h2-L U = 0 (3.4) f” t2r EAn s i n  + s i n  
r=l (n=1 n=l  2r nsl 

By renaming the indices i n  the  two l a s t  sums each equation can be made 
nn s t o  contain only s i n  - u -  

a t  1 + 2r  and the l a s t  a t  
ience i f  one wants t o  read off  i n  formally surveyable form t he  equations 
f o r  the  coeff ic ients  an, which r e s u l t  from the  requirement t h a t  
the  fac tors  of s i n  E individually have t o  be zero. The d i f f i c u l t y  

U 
can be eas i ly  avoided; one has 

It i s  t rue  t h a t  then the  f i r s t  sum begins 
1 - 2 r  which involves a ce r t a in  inconven- 

U 
nns s i n  - + an+2r s i n  - 

n=1-2r 
= 

an-2r 
r=l n=1+2r 
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or, s p l i t t i n g  up the  second sum with consideration of 
- s in  ( n  - 2r)- = s i n  ( 2 r  - n)y, ITS X S  

U 

One 

(2 r  - 1 ) x s  - nx s 
U U sin - - a1 s i n  

= f~-(r  r=l n=1+2r an-2r 

- ... ( 2 r  - 2 ) x s  
U a2 s i n  

m include the fully w r i t t  n terms i n  the f i r s t  sum (which then 
s t a r t s  with 1 instead of 
(with negative index) the  coeff ic ient  -a2,-k (with pos i t ive  index) 

must be understood, and puts 
a l l  sum8 begin with 1, and (3.4) then reads simply 

1 + 2r) ,  i f  one s t ipu la tes  t h a t  by ak-2r 

a. = 0. If one makes such a s t ipulat ion,  

J 
Since the l e f t  sides of equations (3.5) f o r  a l l  values of the  var iables  
a r e  t o  disappear, the  curved braces each must be zero; thus one has 
the  two equation systems fo r  determination of the  coeff ic ients  an, 
of the  expression (2.2)  which, because of 

a re  valid f o r  a l l  n 

n = 1,2,3.  . 
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The f i rs t  system does not contain t h e  eigen-value 6, moreover 
only one An appears i n  each equation; i f  w e  solve f o r  An w e  obtain 

Because of (3.6),  t h i s  equation i s  valid a l s o  f o r  
fore  (without r e s t r i c t i o n  f o r  n) Fmmediately subs t i t u t e  i n  t h e  second 
system, and thus obtain one infinite equation system f o r  determination 
of t he  unknown 
wr i t ten  i n  t h e  form 

n 2 0; one can there-  

an which, with the  abbreviations (2 .5 ’ ) ,  can be 

f2 r (  “n+4-2r + a  n+k+*r)jI + ‘6 E 3 + * * = o  

The determinant A of t h e  homogeneous system (3.8) i s  t h e  buckling 
determinant; A = 0 i s  the  qualifying equation f o r  the eigen- 

value X = - 4 
a* f i  
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Equation (3.8) i s  somewhat modified by w r i t i n g  out the sums over 
them 

kn+2an$t + ( kn-2 + k  n+2 n + '4 1 (kn + kn-4)an-4 + 

--. c 

k n+2 ("n-2 + a  n+6 ) + kn+4( an+2 + a n+6 )] + 't E11-4~n-8 + kn+4an+8 + 

( kn-4 + kn+4)an] + '6 k n + k  n-6 )a n-6 + ( kn + kn+6)an+6] + 

kn+6an+12 + (kn-6 + %1+6)~n] + = O 

The system (3.9) contains only even or  odd indices - t h a t  is, the  
buckling forms symmetrical and a n t h e t r i c a l  with respect t o  the center 
do not e f fec t  one another (of the two buckling forms, the one t o  which 
the  smaller buckling load X pertains  w i l l  occur). 

If the ser ies  (3 .1)  breaks off ,  a8 we assumed, a f t e r  I+ terms, 
we a re  dealing with a f in i t e - t e rn  system. If (3.1) contains, fo r  
instance, only the two first terms, an-4, ane2, an, ant2, an+4, 
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c, 

. 

. 

c 

-1 

r’ 

appear i n  every equation - the  system has f ive  terms. 

it becomes a 9-term system, for  
For (4  # 0 

[6 # o a 13-term system, e t c .  

One determines h by f i r s t  completely se t t i ng  up ( a s  was done 
here f o r  r* = 3) the  system fo r  t he  given number r* of [-terms, 
then arranging it according t o  the unknowns an ( f o r  instance 

an-2[(2(kn kn-2) -I- (4[6(kn+4 + kn-6)l e tc .1  and calculat ing t h e  

coef f ic ien ts  of the  an which thus originate.  For prescribed [-values 

these coef f ic ien ts  are, furthermore, functions of kn, t h a t  i s  of cu, 
p, and ( i n  t he  main diagonal) o f  A. The curvature value w i s  t o  be 
regarded as  prescribed, P i s  chosen, and h i s  then determined from 
the  condition t h a t  the  coeff ic ient  determinant must disappear. 
su i tab le  would have t o  be determined - as i n  the  special  case 

1 / R  = const. - from the  condition 

wave length 2 = U/p 
value h; however, due t o  the high degree of t he  h-equation, this 
condition can be sa t i s f i ed  only by plot t ing 
neighboring P-values and reading off an approxFmate hmin. 

The 

which expresses t h a t  the 

P 
- dh = 0 
dP 

appears pertaining t o  the  smalleet buckling 

h(P) fo r  a number of 

The method requires much detailed calculat ion - still, it i s  
superior t o  other methods ( f o r  instance t o  the method of reducing the  
number of equations by a to-be-guessed r e l a t ion  among the  coeff ic ients  
i n  the  expression (3.1) - which can be interpreted as  a so r t  of Ritz 
method), because it can be highly systematized and, above all, because 
i t s  accuracy may - starting from rough approxhat ion  values - be 
increased a r b i t r a r i l y  and a t  any time. 

Nevertheless, the  calculation i s  ra ther  troublesome, due t o  the  
large number of parameter values cu, 5 fo r  which it must be performed. 
I n  order t o  make a useful  choice among the  ,many possible parameter 
combinations we must therefore, before numerical evaluation, answer the  
question as t o  the  appearance of the  she l l  forms corresponding t o  a 
c e r t a i n  var ia t ion  of curvature 1 / ~ (  s) . 

4. DETERMINATION OF THE CYLINDRICAL, FORM 

FROM THF, VARIATION OF CUR’VATIEB 

By the  equation (3.1) 

1 1  2lls 4lls 6ns - - -(1 + 2c2 cos - + 2c4 cos - + 2c6 cos - + . . R - Ro U U U 
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the  curvature i s  given as a function of  t he  a rc  length. Because of  

L - 9  - 
R d s  

it follows therewith t h a t  f o r  t h e  angle cp = cp(s) 

6 n s  
U 

s i n - + .  4xs U s i n  - s i n  - + 54 - 
€3 Ro nR0 U 2nR0 

2 n  s U 
U 

+ 52 - 

(4 .2)  

From (4.2) one obtains by numerical integrat ion because of t h e  r e l a t i o n  

Q = s i n  cp, ds dx - - cos cp 
d s  

t he  ordinate and abscissa F; of the  p r o f i l e  curve: 

7 = J s i n  cp ds, X = cos cp ds 

The r a t i o  U/Ro i n  equation (4.1) i s  a t  f i rs t  s t i l l  open. It i s  
determined from an assumption regarding the  opening angle 
of t he  shell ;  according t o  equation (4 .2)  it i s  

cpo = cp(U) - cp(0) 

U 9, = - 
RO 

We s h a l l  study here, above a l l ,  t he  half  oval.  
For it 

(Compare f i g .  1.) 

'po = n, t h a t  is ,  U = Ron (4 .4)  

and equation (4 .2)  i s  transformed in to  

. . . ( 4 . 4 ' )  6 n s  + 56 s i n  - cp = - + c2 s i n  E. + - c4 s i n  - + - Sn 1 4ns 1 

U u 2  u 3  U 

I n  order t o  reduce calculat ion expenditure i n  appl icat ion of t he  
equation system (3.91, it i s  desirable t o  manage with as few terms i n  
the  ser ies  (4 .1)  as  possible.  I n  f igures  3a and 3b curvature and course 
of curves according t o  equation (4 .1 )  from ( 4 . 4 ' )  are plot ted f o r  t he  
parameter values 5, = -0.6 o r  -I-, respectively.  54 = (6 = . . . = 0 and 

(4 .3)  

( 4 . 3 ' )  . 

.w 
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.-, 

* 

Figure  4 contains the  curves required f o r  conversion from the  parameter 

5 = - C 2  t o  the axis  r a t i o  E = - and t o  the quantity E '  = - = - 

It i s  seen t h a t  one can ju s t  reach the axis  r a t i o  - = - with the  two- 

term expression: 
i n  the  curvature course, t h a t  i s ,  one would obtain an oval buckled 
inward a t  the  ends of the  small axis - a form t h a t  does not occur i n  
the  applications.  

b b b  
a RO U' 

a 2  
f o r  values I c21> - 1 one would have a change of sign 

I n  order t o  obtain "reasonable" ovals with an axis  r a t i o  F < 1/2, 
one must therefore s t a r t  from a multiterm expression of the type (4 .1 ) .  
Figures 5a and 3b show ( a s  the most obvious oval type) an e l l i p s e  of 
the  ax is  r a t i o  E = together w i t h  i t s  curvature variation. The 

f igure explains w h y  the simple expression 
5' 

- 1 1  = -(l - 5 cos -) 2rr s 
Ro U 

(4.5) 

1 i n  the region of E = - t h a t  is ,  s = 1 may no longer produce e l l i p se -  

l i k e  curves. Simultaneously, it indicates what type of curvature 
expression must be chosen: For the l imit ing curve ( the  oval with 
vanishing curvature a t  the end o f  the small ax is )  a higher power of 

s i n  - comes in to  consideration for 

2' 

U 

56 = c8 = . . . = 0, thus, for instance, 1- sin4 
R U 

t h a t  i s  

- 1 1  = -(1- - 4 cos - 2ns + '?; 1 cos li"g) 
Ro 3 U (4 .6)  

For (8  = clo = ... = 0 

t h a t  i s  

-+-- 1 1  4ns 1 cos -) 6ns (4.7) 231s 6 
10 u lo U 

cos - - - u 10 
l-5 cos - + - 

Ro 
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\ 
Thus one w i l l  use f o r  t h e  pertaining oval-families f o r  instance the  
expression 

b 

1 = Ll - ((1.33 cos U - 0.33 cos ".I] u '  
Ro 

(4.8) 

thus 

o r  re spec t ively , 
2ns 0.6 COS - 4ns + 0.1 cos %I' 1 R = L[ Ro - ((1.5 COS - U - (4 .9)  U 

thus 
C2 = -1.5(, c4 = +0.6(, C6 = -O.l( 

Figure 6 represents t he  oval C2 = -1 from f igure  3b together with the  
oval determined by equation (4 .8)  with and t h e  e l l i p s e  of t he  
same axis r a t i o .  It can be seen t h a t  t he  oval corresponding t o  the  
multiterm expression i s  more e l l ipse- l ike ,  i n  par t icu lar ,  t h a t  it shows 

( = 0.8 

- 

E ' = -  nb 
U '  

no posi t ion of  zero curvature. I n  f igure  7, E = - a' 

and P = /,& R(U *) are  p lo t ted  f o r  t he  expression (4 .9) .  For an e l l i p s e  

p would be equal t o  E - one recognizes from t h e  representat ion t h a t  
p ( ( )  and E ( ( )  between E = 1 and E = 0.33 l i e  c lose together so  t h a t  
t h e  four-term expression (4.9)  i s  su f f i c i en t  t o  describe reasonable 

ovals down t o  an axis r a t i o  b - 1  a - - 3 '  

I n  the expressions (4.8) and (4.9) t h e  signs a l t e rna te .  If one 
chooses the same expressions all with the  same signs, it s i g n i f i e s  t h a t  

t he  posit ions cp = 0 and cp = 2 exchange t h e i r  roles:  One obtains 
(with exchanged axes) the  same oval; on ly  now the  two halves are 
connected t o  t h e  flanges a t  the  ends of t he  la rge  axis,  i f  we s t i l l  
visual ize  t h e  flanges a t  cp = 0 and n .  Since t h i s  case i s  of l e s s  
prac t ica l  i n t e re s t ,  w e  s h a l l  not discuss it more closely - but  it should 
be pointed out a t  l e a s t  t h a t  it i s  i n  t h i s  simple manner r e l a t ed  t o  the  
"main case" equations (4 .8 )  and (4.9) '  respect ively.  

n 
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For reasons of calculat ion expenditure we refrained i n  the  present 
invest igat ion from extending the expression f o r  1 /R  s t i l l  fur ther ;  
going s t i l l  fur ther  in to  an individual case does not present any funda- 
mental d i f f i cu l t i e s ;  however, the expenditure w i l l  hardly ever be worth 
while f o r  the  applications since the  calculations performed with the  
expressions (4.5) t o  (4.9) led t o  the r e su l t  t h a t  the  axis r a t i o  
i s  a su i tab le  parameter for  characterization of t he  s t a b i l i t y  behavior 
of an oval, t h a t  is, t h a t  the form variat ion i n  d e t a i l  i s  of minor e f f ec t  
on the  magnitude of the buckling load. 

E 

5. COMPUTATIONAL EVALUATION OF THE BUCKLING 

DETERMINANT IN THE CASE OF COMPRE3SION 

Calculation o f  the eigen-values X from the condition t h a t  the 
determinant of the homogeneous equation system (3 .9 ' )  must vanish i s  
possible o n l y  "step by gtep:" 
with small 5 and (c, values and with the  two-term expression (4.3) 
fo r  the curvature var ia t ion.  

Step by s tep  i n  the sense t h a t  one s t a r t s  

For ,& = c6 = 5, = . . . 0, each of the  equations (3.9) contains 

only the  two f i r s t  l ines ,  and the system reads, arranged according 
t o  the  unknowns (with 
f o r  odd n 

C 2  = -0, 
\ 

= o  

-[El+ 

C2k5a3 - 5k5+ k7]a5 + k+? - q a 7  + . . . = oj 
. . . . . . . . . . . . . . . . .  
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and f o r  even n 

= O l  

= o  

J 

The second system shows t h e  usual i n i t i a l  i r r e g u l a r i t i e s  i n  the first 
equation, t he  f irst  system, those i n  the two f i r s t  equations. For the  
f i r s t  system these i r r e g u l a r i t i e s  a re  such t h a t  the  s ign of 
considerably a f f e c t s  the behavior of t h e  f i rs t  terms. 

{ 

I n  contrast ,  t h e  eigen-value resu l t ing  from t h e  second system does 
not depend on the  s ign of [ (on ly  ab, a8, a12 change t h e i r  s igns) ;  
since the even terms i n  t h e  expression (2.2) have nodes a t  s = 0 
and U/2 (Cp = 0, 71/22, it must indeed be a matter of indifference a t  
which of t he  axis  ends t h e  flanges are connected. 

The secondary terms are  s m a l l  i f  5 i s  small and - since they 
contain only the  quant i t ies  - 6 - i f  @ i s  small. For 
su f f i c i en t ly  small values of 5 and fi ( f o r  instance, 25 = 0.3, 
fi = 5O), therefore,  a port ion of two equations from one of t h e  two 
systems (5.1 o r  5.2) suf f ices  for  t h e  determination of t h e  eigen-vdue. 
The quadratic equation f o r  X i s  eas i ly  solvable, t h e  minimum value 
as  a function of p can be determined immediately. If one r e t a ins  
f o r  instance 
two o r  three equations, can determine and X, and p lo t  both 
quant i t ies  a s  a function of fi. 
approxFmation values by t r i a l  subs t i tu t ions  i n  the  determinant, and 
continues i n  t h i s  manner up t o  the  upper l i m i t  f o r  6, at  about 
@ = 4000, which i s  of  p rac t i ca l  i n t e r e s t .  

5 and increases fi, one can a t  f irst  s t i l l  manage with 

By extrapolat ion one obtains approxi- 
'^mation values of p and X f o r  t h e  next fi value; one improves these 

A twofold  d i f f i c u l t y  opposes performance of  this calculat ion:  
F i r s t  one must decide on the  order of t he  determinant port ion t o  
be selected which f ixes  with suf f ic ien t  approximation t h e  eigen-value 
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(which ac tua l ly  should be determined from an i n f i n i t e  determinant 
Since the  order of & increases w i t h  fi ( t h e  secondary terms become 
more and more important), the  buckling determinant f i n a l l y  becomes of 
too high an order t o  be s t i l l  solvable with respect t o  Neglecting 
the convergence problem (regarding t h e  mechanically reasomb1.e r e s u l t  
as  a suf f ic ien t  confirmation of convergence), we can surmount both 
d i f f i c u l t i e s  by the following method. Besides the  one f o r  P, we 
inse r t  an approximation value X1 - (estimated by extrapolation) f o r  
A also,  and reduce the determinant t o  i t s  main diagonal with the  
a i d  of Gaus8' a l g o r i m  - without f i r s t  f ix ing  m. If we p lo t  the  new 
diagonal values ( the  product o f  which represents the  value of  t he  
determinant h) against the pertaining number of equations n, we 
obtain a point sequence we can connect by a curve. If we continue 
su f f i c i en t ly  f a r  with m, t h i s  curve w i l l  e i t he r  in te rsec t  the axis  
(generally not precisely a t  an integral  I f  t he  curve 
in te rsec ts  the  axis, the main diagonal terms were too unimportant, 
thus h = hl too large.  The calculation is  repeated with a s l i g h t l y  

smaller X = hp; i f  the curve t h i s  time bends up, t he  number m w a s  

chosen correctly,  and the  desired A-value m u s t  be between X1 and X2 
because the  new diagonal terms would, with increasing 
decrease asymptotically toward zero ( b - 0 )  f o r  t h i s  X-value. 
Figure 8 shows a number of such curves f o r  
of values fo r  6, P,  and A .  From the two curves corresponding t o  
0 = 500, 
must be between J.1 = -1.18 and X2 = 1.16. The difference between 

the values Al and A2 I s  a measure of the  accuracy of the calculat ion.  

The e n t i r e  procedure must now be repeated f o r  neighboring 
order t o  make reading off  the m i n i m u m  from a h(P)  curve possible.  
Since, however, X as  an extreme value i n  the  neighborhood of the  
correct value i s  affected very l i t t l e  by the choice of 
most th ree  - P proofs w i l l  generally be suf f ic ien t ,  provided the  
invest igator  has had some "experience" with t h i s  calculat ion method. 

&). 

X. 

n) o r  bend up. 

n, have t o  

25 = 0.3 and several  sets 

cbo P = 16, one recognizes, for instance, t h a t  the root  of 

p-values i n  

P,  two - a t  the  

One thus obtains a family of curves A (  6) with 5 as parameter. 
Since the  curves run smoothly, one can conveniently interpolate  on'the 
bas is  of four such curves ( 2  ( = 0, 0.3, 0.8, 1.0) and with the a id  of 
the  curves of f igure 4 convert t o  the  d i r ec t ly  prescribed quant i t ies ,  
the axes a, b of the  oval, and t o  the wall thickness t contained 
i n  CY++ and 6. According t o  (2.5)  
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according t o  (4 .4)  one obtains f o r  t he  half  oval 

With t h e  dimensionless 

instead 

E '  = - Jib represented i n  f igure 4 one may write 
U 

t A € '  - a 1 

E J- 2b 
- =  (5.4) 

and since h i s  i t s e l f  a function of fi ( t h a t  is, U / t )  and 5 
( t h a t  is, 

t he  r a t i o  

of t he  oval. 

U/b) ,  everything can be converted t o  t h e  two parameters, 
2b b - (spar  height/skin thickness),  and the  axis  r a t i o  - 
t - E  

I n  t h e  region 200 5 fi 4000 which i s  in te res t ing  i n  pract ice  
( t h a t  is, f o r  t h e  w i n g  nose), f o r  e-values > 0, the  two h-values are 
not distinguished according t o  equations (5.1) and (5 .2 ) .  This becomes 
physically understandable i f  one considers f igure 9 where f o r  a "mean" 
p a i r  of parameters 6, 
equation ( 3 . 2 ) ,  i s  p lo t ted  against  the developed width. 
t h a t  a large wave or iginates  i n  t h e  f la t  region while many t i n y  waves 
develop i n  the  region of large curvature; and it i s  immediately plausible  
t h a t  it cannot a f f e c t  t he  magnitude of buckling load whether these 
s m a l l  waves happen t o  have a bulge or a node a t  t he  point cp = 2. 

(-values < 0, of course, t he  buckling values d i f f e r  considerably; for, 
whether or not a node i s  enforced a t  the f l a t  place 
f o r  t he  buckling form.) 

t h e  buckling p ro f i l e ,  as it r e s u l t s  from 
One can see 

(For 
2 

cp = 0 i s  decisive 

The calculat ion with the  multiparameter curvature expressions (4.8) 
and (4.9) takes fundamentally exactly t h e  same course, except f o r  t he  
f a c t  t h a t  here the  computation of t he  coef f ic ien ts  of  t h e  equation 
system (3.8)  as  functions of 5 and of t he  quant i t ies  k, i s  much more 
troublesome, and t h a t  the complexity of t he  system i s  of disadvantage 

I a l so  f o r  application of Gauss' algorism. With a four-term 
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1 
I 

. 

expression (4.1) a s  a basis, the f i r s t  coeff ic ients  of the system read 
(we denote them here simply by t h e i r  indices put i n  parentheses): 

( 2 2 )  = - 1 + k2(1 - f4)2  + k4(C2 - c ~ ) ~  + k614 2 + k8c62 
k2 

(l?) = k1(14 - <6)( l  - 12) k352(52 - 14) 4- k5(f4 - 56) + 51216 

Fortunately, the  calculat ion with the new coeff ic ients  need not be 
performed f o r  a l l  former fi and  c values; the  P-values and 
the  much l e a s  sensi t ive A-values for t he  ovals of equal axis r a t i o  

and equal r a t i o  - 2b are found t o  l i e  very close together. Thereby the t 
calculat ion with the  expressions (4.8) and (4.9) assumes the character 
of a check calculat ion f o r  the  region 
polat ion calculat ion f o r  the values of 

1 2 6 21/2 and of an extra- 
1/2 ,> € ? 1/3. 

That the  buckling load depends only on 2b/t and b/a ( t h a t  is, 
on the  form "on the whole"), but not on the curvature var ia t ion  i n  
de ta i l ,  can be physically explained by the  e f f ec t s  of curvature varia- 
b i l i t y  which oppose one another: 
those of small curvature, and - as the calculat ion shows - it does not 
make much difference fo r  the  load capacity whether a s m a l l  region with 

The pa r t s  of stronger curvature support 
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I n  order t o  understand what i s  t y p i c a l  i n  the new way of put t ing 
the  problem, we s h a l l  begin with t h e  simplest case: t h e  closed cylinder 

I of i n f i n i t e  length which shows nei ther  edges c = const.,  nor edges 

strong curvature i s  present, which f o r  t he  rest has t h e  character of an 
almost r ig id  edge support, o r  whether, as f o r  t he  oval ( h . ? ) ,  a l a rge r  
region of medium curvature expands which re l ieves  the  rest of  some of 
i t s  load. However, it i s  noteworthy that not t h e  mean curvature (one 
parameter a) i s  decisive f o r  t he  c r i t i c a l  compressive stress, but t h a t  
two parameters, axis  r a t i o  and spar height, appear as the  c r i t i c a l  
quant i t ies .  

The t o t a l  result i s  shown i n  f igure 10 i n  logarithmic representation. 
Use of the curve t ab le  requires a b r i e f  experimental method since f o r  
reasons of c l a r i t y  i n  the  extensive 
t i o n a l  t o  t he  compressive force 

U / t  range the  expression propor- 

u t  
E 2b 
- -  ( 5 . 6 )  

could not be represented, but only the  quantity proportional t o  the  

s t r e s s  E. Thus one must, f o r  prescribed compression force, f i rs t  
estimate the quant i t ies  u o r  t and may then determine on the b a s i s  
of t he  curve i n  what direct ion t h e  estimated value m u s t  be changed. 

U 

6.  THE CLOSED CYLINDER UNDER P m  SHEAR 

The shear problem d i f f e r s  considerably from the  compression problem 
i n  mathematical respect.  The main equations (2.1) no longer contain i n  
a l l  terms an even number of derivatives with respect t o  each of t he  two 

variables.  Consequently, s i n  - can no longer be factored so  t h a t  
2 

t h e  equations (2.1'), which served as s t a r t i n g  point f o r  the compression 
calculation, lose t h e i r  val idi ty;  one muet r e f e r  back d i r e c t l y  t o  the  
p a r t i a l  d i f f e r e n t i a l  equations 

E n A@ - E wxx = 0 
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s = const. 
out interference,  the appropriate expression f o r  solution i s  eas i ly  
guessed: With 

Since f o r  such a cylinder oblique waves can go around with- 

m 

w = s i n  $ns + 13x1 
-00 

n a = f %  s i n  d n s  + px) 

where 
equations (6.1) i s  transformed - with consideration of the expres- 
sion (3.1) and of the trigonometric i den t i ty  

2U i s  the  circumference of the complete cylinder, t he  p a i r  of 

2 cos - 2rns s i n + n s + p x )  If = s i n F ( ( n + z r ) s + p x )  TI + s i n - ( ( n - 2 r ) s + p x )  TI 
U U 

in to  

fl 
2 f ($(p2 f n2)2An + E p2an) s i n  -(ns + ax) + 

n-l --OD RO U 
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The equation system (6.3) i s  constructed exact ly  l i k e  t h e  system (3.4) 
except f o r  the  f a c t  t h a t  s i n  - i s  now replaced by s i n  -(ns + Px), 

and P2a by 2 P n ~ .  Nevertheless the  fur ther  treatment i s  very 
different  i n  the  two cases.  The summand Px i n  t h e  argument of the  
s ine  function causes the  terms with pos i t ive  and negative n no longer 
t o  be distinguished simply by the  s ignj  t he  expression (6.2) must there-  
fore  contain a l l  n values from -m t o  OJ (whereas i n  the  compression 
case the pos i t ive  
t i o n  tha t  s a t i s f i e d  a l l  conditions),  and t h e  equation system f o r  deter-  
mining the an and a-n ( #  -an) extends, therefore,  t o  i n f i n i t y  " in  

both directions . I 1  That, moreover, t h e  fac tor  of t he  eigen-value 
i s  2np instead of P2 has the  r e s u l t  t h a t  t h e  minimum value f o r  '1. 

as  a function of P l i e s  i n  an e n t i r e l y  d i f fe ren t  P range than i n  the  
compression case. I n  order t o  perceive t h i s  las t  f a c t  which i s  of 
utmost importance fo r  t he  computational evaluation of the  equation 
system (6.3) we s h a l l  here, exact ly  as i n  the  compression case, b r i e f l y  
t r e a t  the cylinder of constant curvature a t  t he  outset .  

nn s n 
U U 

n values had been su f f i c i en t  f o r  obtaining a solu- 

For [2r = 0 t h e  equations (6.3) a re  each reduced t o  t h e  f i r s t  

l i n e .  

results in  a system of equations which contain i n  every case only 
unknowns An, an with the  same index. The buckling condition r e s u l t s  
precisely a s  it d i d  i n  t h e  compression case (compare equations (2 .4) ,  
e t c . )  and reads with t h e  abbreviations ( 2 . 5 ) ,  ( 2 . 5 ' ) ,  and 

The requirement t h a t  t he  f ac to r  of s i n  E(ns + Px) must disappear 
U 

according t o  (2.6)  

1 n - + % - - p = O  kn P 

dp 
dP 

The condition - = 0 y ie lds  

(6.4) 

( 6 . 5 )  
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Since f o r  t he  complete cylinder 

i s  a very grea t  number, P must 
order t o  cause 

25 

be e i ther  very la rge  o r  very s m a l l  i n  

(6.41) 

t o  assume reasonable amounts. With the assumptions 

there  follow from (6.5) f o r  B and kn t h e  simple formulas 

and therewith f o r  p 

The c r i t i c a l  shear load therefore  a t t a i n s  i t s  minimum f o r  s m a l l  
values. According t o  equation (6.2) ,  P/n i s  the  tangent of t h e  angle 
formed by t h e  node l i n e s  and t h e  x-axis; thus P << n s i g n i f i e s  t h a t  
long wave c r e s t s  almost p a r a l l e l  t o  the  ax is  develop. I n  case of longi- 
tud ina l  compression, on t h e  other  hand, wave f i e l d s  with an aspect r a t i o  
of t he  order of magnitude uni ty  a r e  formed; t h a t  is, t h e  reciprocal  
ac t ion  of s t re tching and bending, which i s  cha rac t e r i s t i c  f o r  t h e  shel l ,  
takes  f u l l  e f f ec t  i n  case of compression, but not i n  shear; hence the  
c r i t i c a l  shearing s t r e s s  according t o  equation (6.6) i s  incomparably 
lower than the  c r i t i c a l  longitudinal-compressive s t r e s s  according t o  
equation (2.8) .ll 

P 

.' 

~ ~~~ ~ 

"For longitudinal compression there  i s  ak - ( t / R ) l ,  f o r  shear - ( t / R ) 3 / 2 ,  f o r  normal pressure ( the  wave c r e s t s  run exact ly  axis- 7 

p a r a l l e l )  t he  c r i t i c a l  hoop s t r e s s  becomes 
k - ( t / R )  '. 
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4 It i s  c l ea r  (and i s  confirmed by computational spot checks), t h a t  
t h i s  behavior of t he  i n f i n i t e l y  long  s h e l l  under shear cannot change 
fundamentally, due t o  the  var iable  curvature. I n  discussion of t he  L 

system (6.3) we may, therefore,  m a k e  use of t h e  assumption 

p2 << n2 

A s  a consequence, t he  quant i t ies  

decrease very rapidly with increasing n, thus the  secondary terms i n  
the  determinant of buckling for l a rge  
t h a t  the discussion of t he  equation system resu l t ing  from equation (6.3) 
may be l i m i t e d  t o  a few terms around n = 0. Equation (6.6) i s  main- 
ta ined as an approximation resultj it permits t h e  conclusion that the 
terms n = f2,  a s  t h e  terms with t h e  smallest  n, w i l l  play t h e  decisive 
role;  for, according t o  equation (6.4), n = 0 has no meaning, and 
n = 1 leads t o  an e n t i r e l y  d i f f e ren t  type of buckling (Greenhill  
buckling) with which w e  do not want t o  deal  here and f o r  t h e  treatment 
of which t h e  simplified equations (6.1) would not be suf f ic ien t .12  

n become negligibly s m a l l  so 

Thus we consider t h e  system (6.3)  for even n and l i m i t  ourselves, 
f o r  reasons of c l a r i t y ,  t o  a three-term curvature expression (3.1)  and 
t o  f i v e  equations. One then obtains by eliminating t h e  h, arranging 
and put t ing equal t o  zero t h e  f ac to r s  of 

a system o f  f i v e  

a 3  

5[ s i n  -(ns + PX) f o r  n = -4, -2, 0, 2, 4 U 

equations, t he  determinant of the  coef f ic ien ts  of which 

12Compare Fl;;@;ge: S t a t i k  unri Dynamik d e r  Schalen ( S t a t i c s  and 
dynamics o f  s h e l l s ) ,  p. 199 f f . ,  Ber l in  1935; furthermore, Kappus: 
Elastizit-Gtstheorie grosser Verschiebungen, ( E l a s t i c i t y  theory of la rge  
displacements), ZAMM.19, 1939, p. 351 f f .  
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must vanish. The coeff ic ients  ( i , k )  of  t h e  determinant are 

1 
( 0 , O )  = - + k + 25 2k + 25 2k 

0 2 2  4 4  k0 

(-4,2) = (2,-4) = (4,-2) = (-2,4) = - 5  2 C 4( k 0 + k2) 

(-4,-2) = (-2,-4) = (4,2) = (2,4) = c2(k2 + k4) + 5 5 ko + k6) 
2 4( 

Thus the  determinant i s  b u i l t  i n  a manner permitting an easy survey; 
by appropriate addition of t he  l ines  o r  columns it may readily be simpli- 
f ied s o  t h a t  the very large term 

are, compared t o  
2’ k4, k6 appears only a t  the point ( 0 , O ) .  Since k 

ko, small i n  the r a t i o  $, a four-series determinant remains which cgn 

be fur ther  reduced i f  one also neglects everywhere compared t o  

k2 

n 
k4, 

and makes sure t h a t  the large term 

1 - 256 
k4 P 2 f i  
- - -  

occurs only i n  the elements (-4,-4)(4,4). The condition A = 0 is  
then reduced t o  the statement t ha t  the inner two-series determinant 
must vanish. In  t h i s  manner a quadratic equation fo r  p originates  i n  
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which the l i n e a r  term a l so  vanishes ( t h e  s ign  of 
mined, as it must be),  so  t h a t  one has as buckling condition: 

p remains undeter- 

This formula does not vary i f  a m u l t i t e r m  expression f o r  1 / R  i s  
used, because the  56, (8, i n  t h e  decisive two-series determinant occur 

only i n  combination with k4, Q . . ., and thus must be eliminated 
corresponding t o  the  other neglections leading t o  ( 6 . 7 ) .  

The s ign of C2 i s  insignif icant  (as it must be f o r  t he  closed 
cylinder);  t h e  deviation from c i r cu la r  form cauaes a reduction i n  c r i t -  
i c a l  load which can eas i ly  be calculated f o r  t h e  ovals of t he  type (4.8)  
or  (4.9) t h a t  a r e  of i n t e r e s t .  F i r s t  w e  must determine from 

( 6 . 7 ' )  

t h e  c r i t i c a l  P-values by d i f f e r e n t i a t  on with respect t o  P or l / p .  
The simple calculat ion y ie lds  fo r  1 / P  t the  quadratic equation: 

The two expressions 

(1 - (4)* and (1 + (4 - 2(22)2 

f o r  t h e  o v a l s  of type (4 .8) ,  (4 .9)  i n  t h e  (-range which is, according 
t o  figure 7, of i n t e re s t ,  d i f f e r  numerically only s l i g h t l y  so t h a t  it 
i s  permissible t o  replace, f o r  t he  determination of t h e  extreme, the 

4 

L 
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square o f  the  geometric mean occurring i n  the  last  term o f  the equa- 
t i o n  (6.8) by the  square of the  arithmetic mean; (6.8) then reads 

2% (1 - + (1 + 14 - 2C22)2 
- 2 2  - 

3 q 256 2 ')I = o  
4 1 - c4)' + (1 + c4 - 2c2 

and has the pos i t ive  r o o t  

= 3(1 + 142 - 2522(1 + 54) + 252) 
I f  we subs t i t u t e  t h i s  i n  equation ( 6 . 7 ) ,  t he  two radicands may be 
wr i t ten  i n  the  form 

We have therefore  

p = a + c42 - 21& + c4) + 2f2 y 4 p  - 
27m 

e4 - + 14) + c24 

1 + 542 - 2c22(1 + c4) + 2c2 
(6.9) 

The las t  fac tor  
(4 .9 ) .  Then it 

r 
i n  (6.9) may be replaced by 1 f o r  an  oval of  the  type 
can be wr i t ten  i n  the form 

which makes it c l ea r  t h a t  even i n  the extreme case 

(compare f i g .  7) the  reduction caused by the  second summand s tays  below 

25, = 0.6 x 0.9 
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1 percent. Thus there  r e su l t s ,  with consideration of U = Ron, f o r  
t he  c r i t i c a l  shearing s t r e s s  

Aside f rom the factor  [l -t . . 
exactly l i k e  the  formula f o r  t he  c i rcu lar  cylinder derived by F l k g e ,  
except t ha t  the numerical f ac to r s  deviate s l i g h t l y .  

fi - 0.272, thus F l k g e ' s  theory the factor  - = 0.236 replaces - - 

a numerical value smaller by 15 percent. This e r ro r  i n  t h e  
formula (6 .91 )  stems from t h e  simplifications i n  the  i n i t i a l  equa- 
t i o n s  (6.1) which were permitted only under t h e  assumption t h a t  "many" 
waves developed i n  the  hoop direction; however, t h e  deviation i s  s t i l l  
within technically to le rab le  limits, i n  s p i t e  of the buckling form of 
extremely low wave number ( n  = 2 ) .  

t h e  formula (6 .9 ' )  i s  b u i l t  

According t o  
13  

1 

3G 3 0  

Thus the  mean curvature l / R o  is, according t o  ( 6 . 9 ' ) ,  e s s e n t i a l l y  

decisive f o r  t he  load capacity of the cylinder with oval d i r e c t r i x  under 
shear load. One determines t / R o  from the  spar height 2b and the  

axis r a t i o  

(accordipg t c  t he  f o m  of t he  d i r e c t r i x )  on the bas i s  of the 

b 
a 

E = -, with t h e  a i d  of the ~ I - c w v e  of f igure 4 or  7 

.L .L 

4 

c 

; E '  i s  read off as a f'unction of E by i n t e r -  b r e l a t i o n  - = 2 ~ 1  
RO 2b 

polation o f  the  variable 5 .  Accordingly, (6 .91 )  can be wr i t ten  i n  
the  form 

I n  f igure 11 the  factors  
correction - a re  given by 

$(E), which - with consideration of F l k g e ' s  

13Schalenbuch (Book on s h e l l s ) ,  p .  206. 
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are drawn (dot-dashed) fo r  t he  ovals (4.5) and (4 .9 ) .  The two curves 
p rac t i ca l ly  coincide. The expression $(6) = 1.346 - 0.37s2 - 0.23 
may serve as approximation formula for  both ovals (and of course a l s o  
f o r  (4 .8) ) ;  thus 

7. THE BUCKLING CONDITIONS FOR THE CYLINDRICAL SEGMENT UNDER 

SHEAR LOAD; ITS SOLUTION I N  FIRST APPROXIMATION 

More important f o r  t h e  appl icat ion than t h e  closed cylinder under 
shear load i s  t h e  cy l indr ica l  segment of var iable  curvature supported 
along two edges 
We th ink  f o r  instance of a ha l f  oval with the  longi tudinal  edges 
supported according t o  t h e  requirements of t h e  conditions (2 .9) .  The 
expressions (3.2) and ( 6 . 2 ) ,  which f o r  t he  previous problems had led t o  
f in i te - te rm equation systems, are not usable: One does not s a t i s f y  t h e  
d i f f e r e n t i a l  equation, and t h e  other cannot be adapted t o  t h e  boundary 
conditions.  I n  contrast ,  t h e  problem leads t o  an i n f i n i t e  equation 
system i n  which every equation has an i n f i n i t e  number of  terms, with the  
a i d  of t h e  expressions 14  

s = constant under shear load (and shear-compression) . 

w = f (an s i n  - IIX + b, COS - s i n  nns 
2 1 

IIX nx )  s i n  nns fi = f (4' s i n  - + Bn cos - 
1 2 2 

which s a t i s f y  term by term the  boundary conditions (2.9).  The ca l -  
cu la t ion  expenditure i s  nevertheless smaller than i n  t h e  case of com- 
pression because the  c r i t i c a l  range i s  again the  region of small 
P-values where t h e  system converges extremely rapidly.  For obtaining 

' b e s e  expressions are also used by Kromm i n  t h e  repor t  mentioned 
i n  footnote 5, Luftf.-Forschg. 1938, p.  317. Kromm gives a descr ipt ion 
of  t h e  physical importance of t h e  expression (compare t h e  formulation 
of (7.8) below i n  the  summary) i n  the yearbook 1940, p.  834. 
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the  equation system i t s e l f ,  one must employ considerations s imilar  t o  
those in  sec t ion  3; it i s  pa r t i cu la r ly  useful  t o  introduce again the  
s t ipu la t ion  (3 .6) .  If we l i m i t  ourselves, fo r  reasons of c l a r i t y ,  
preliminarily t o  t h e  simplest curvature expression 

2ns) U 
- 1 = L(l - 25 cos - 
R Ro 

the re  resu l t  f rom the  f i rs t  equation (2.1) (compare (3 .7) )  

r[X ITS s i n  p - s i n  n - 
U U 

by equating t o  zero the  fac tor  of 

YCX f l S  
and by equating t o  zero t h e  fac tor  of cos P - U s i n  n - U 

nx s s i n  - 
U 

The second equation (2.1) where one can a t  f i rs t  not f ac to r  

y ie lds  correspondingly 

m 

27p nbn cos ET[  E -(p2 t 2 n 2  + n2)' - 
1 u 1 1 - v 2  u2 

m u p 2 4 b n  s i n  E - L(1 - 25 cos 271 ")p2x Bn s i n  - nn s - 
u 1  U Ro 

m 
nn s 

U 
2 q x  "an cos - = 0 

1 
-\ 

(7 .2 '  1 

.) 
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In  order t o  make of thes  

33 

two equations - i n  which w e  v i sua l ize  An, 
Bn inser ted according t o  (7.2) - an equation system f o r  determination 

of t he  an, bn, w e  must replace the  factors  cos - nn s by s i n  -, nn s by 

means of an addi t ional  Fourier expression. We f i rs t  rename t h e  summa- 
t i o n  index i n  the  last term 

U U 

m n s  27Pxmbm cos - 
U 

The Fourier coef f ic ien ts  o f  t he  f'unction 

the  known manner from t h e  r e l a t i o n  

cos E are obtained i n  
U 

m m  nns 
U U 

U n  sin2 ds  U 

s i n  - d s  
nn s s i n  - = - s i n  - 

U 
cos m =E  

[m o r  n odd] 

The l a s t  term of t h e  f i r s t  equation (7 .2 ' )  becomes therefore  

By exchanging the  sequence of t h e  two summations, introducing (7.2) ,  

put t ing the  fac tors  of s i n  individually equal t o  zero and 
U 

enlarging them by there  r e su l t s  from the  f irst  equation ( 7 . 2 ' )  
pa*fi '  

(7.3) 
From the  second equation ( 7.2 '  ) follows an ident ica l ly  constructed 
equation i n  which ai and bi appear exchanged compared t o  (7.3),  
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4 

and the sign of t h e  last  term i s  reversed. One now readi ly  recognizes 
t h a t  one does not need both equation systems f o r  determination of t h e  
c r i t i c a l  value of T . l 5  For t h e  second system i s  transformed in to  the  
f i r s t  if one mult ipl ies  t h e  f irst ,  t h i rd ,  f i f t h  . . . equation by (-1) 
and puts 

. 

both systems have, therefore, t he  Same eigen-value Tk2. 

I n  order t o  c l a r i f y  the  fur ther  considerations, w e  introduce 

besides the abbreviations ( 2 . 5 ' )  and 

quant i t ies  spv by t h e  equations 

p = - 8T addi t ional ly  c e r t a i n  
U*fi 

s - ' p i ' -  + (1 + O2k, + f2k 
11 - k l  

s = -($ p [ k 3  + %I, e t c .  35 

3-5The respective consideration a l so  i s  t h a t  of A. Kromm, Luftf .-  
Forschg. 1938, p.  >21. 

. 
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. 

Then t h e  coef f ic ien t  scheme of the equation system (7.3) i s  

a 
a3 6 7 

b 5 
a 4 b al b2 

1.6 
0 . .  . - - - 

15 35 ' S 
1.4 

13 15' 
S 1.2 

S CI 11 3 

- 4.1 cL - 4.3 , 4.5 cL 4.7, 
15 '24 7 9 s46 -33 . . .  -- 

W e  invest igate  f irst  t h e  case of pure shear load (X = 0 ) .  Pre- 
c i se ly  as i n  t h e  case of t he  complete cylinder, here a l so  the  lowest 
buckling load per ta ins  t o  t h e  buckling form with t h e  "steep" waves, 
t h a t  is ,  t o  small B-values; as  there, w e  need use, therefore,  only a 
small i n i t i a l  port ion (from the  system (7.5)) and can make appreciable 
s implif icat ions within the  coeff ic ients  themselves. 

We obtain a f i r s t  approximation for t h e  c r i t i c a l  values of  p 
from the  determinant of buckling o f  the two f i r s t  equations 

The per ta ining wave length results f r o m  

Because of 

p << 1 

t h e  evaluation of equation (7.7) i s  very simple. From 
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-. 
it follows f i r s t  t h a t  the  terms c2k4 cannot be of importance 
compared t o  t h e i r  neighboring terms; if we, moreover, regard k, instead 
of p2, as t he  unknown t o  be determined, equation (7.7) i s  reduced t o  
the  simple problem of determining the  minimum of the function 

(%,, 

as a function of kl. 

parentheses can be omitted, since the d i f fe ren t ia t ion  of the  f i r s t  

parentheses yields  

One f inds t h a t  t he  second summand of t he  second 

- - (1 + c ) * ,  which becomes zero f o r  

k12 

(7.7') 

so t h a t  kl 256 i n  the  neighborhood of the  extreme i s  indeed vanish- 

ingly small. 
t i o n  ( 7.6) reads 

7 
With (7.7' ) , and omission of the  small terms, equa- 

t n  P 

8 / m u 2  

-- @fip = E For the  c r i t i c a l  shearing s t r e s s  7 = - 
there  resu l t s  therefore  

wherein, we can, of course, again wri te  l / R o  fo r  n/U. 
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8. CRITICAL SHEAR LOAD FOR THE HALF CYLINDER 

OF AREiITRARY CURVATURE 

The formula (7.9) has exactly the same construction as the  
formula (6 .9 ' )  f o r  the complete cylinder. 
while t o  re f ine  it o r  even t o  discuss it more closely because it 
represents, a f t e r  a l l ,  among the  formulas obtainable from the  equation 
system (7.5) on ly  the  f irst  approximation. 
approximation does not of fe r  any d i f f i c u l t i e s  since one may now u t i l i z e  
the  experiences made i n  determining the f i r s t .  

However, it i s  not worth 

Calcule,tion of the  second 

From the  requirement t h a t  the  determinant 

has t o  vanish, the second approximation fo r  the c r i t i c a l  value of  
p2 becomes 

('11'33 - s132)s22 
8 

11 5 '13 3% + -  4 
9 33 25 
- s  + -  

- 9 
- i; %lS22 

2 
s13 

'11'33 
81 sll 18 913 

1+--+-- 

1 -  

25 s33 s33 

= c l %  
I 

W e  can put fo r  the sik: 

(8.1') 

9 
If P 4nP 

s22 = - -  = -  
4 %  k l  
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The correction terms i n  (8.1) thus become 

- - = - -  l8 '13 
s33 45 

2 5  (1 + ()kl 

We can estimate t h e i r  magnitude with equation ( 7 . 7 ' )  

One can see t h a t  fo r  determining the  locus 
the numerator correction term may be eliminated; t he  denominator terms 
a l s o  may be cancelled, since the term 
remainder i s  so s m a l l  t h a t  it i s  again of no importance. Thus - - 
and f o r  determining kl and P2, respectively, w e  r e t a i n  the  simple 

formula (7 .7 ' ) :  

P2 of t he  extreme value 

i s  a constant, and the  2 / 2 5  
dC - 0  

dP 

Thus equal signs appear i n  equation (8 .2 )  ; by subst i tut ing equation (8.2) 
i n  equation (8.1), one obtains f o r  t h e  correct ion C t o  be made i n  the  
f i rs t  approximation p12 the expression 

a f f e c t  pII - fi i n  t h e  10 c c2 1 m e  quant i t ies  - - and - 

extreme case ( = 0.5 by l e s s  than 1 percent. The only esserk ia l  
difference between the two approximations pII and pI consists,  
therefore, i n  t h e  numerical factor  which causes reduction by about 

243 1 + 5 162 (1 + 0 2  

4 

. 
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2 percent; thus a fur ther  approximation can not bring any flurther 
(T*@ - If w e  now introduce 7 = - CI i n  es sent  i a l  improvement. 16 

(8 .4)  1 3  %l+-- 5 c  c 2  
243 1 + ( 324(1 + ()2 f s o 1 + c  

c* = Fl = 1 + - - - 

Jf \/1 + 
and pI = - -, w e  obtain 

5fi E 
265 (12(1 - v 2 )) 312 

I - = -  

f o r  V = 0.3, thus 

( 8 . 4 1 )  

For t h e  special  case = 0 t h i s  f o r m u l a  i s  transformed, as it must be, 
i n to  Kromm's formula (va l id  f o r  a rb i t r a ry  U/Ro) : 

(8.4") 

If w e  introduce instead of U the spar height 2b, ( 8 . 4 ' )  reads 

wherein 7 
of the oval (4.5) is  obtained fromthe curves of f igu re  4. 
i n  a dashed l i n e  i n  figure 11. 

is  a flmction of the axis r a t i o  which i n  the  special  case 
It i s  drawn 

For an a r b i t r a r y  oval represented by the  general expression (4 .1) ,  
t h e  calculat ion i s  hardly different from t h a t  f o r  t h e  oval represented 

l6For t h e  special  case ( = 0 A. Kromm, Luftf.-Forschg. 1938, 
p.  525, has proved by a check calculation t h a t  p - I11 - pII' 
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by (4 .5) .  The quant i t ies  sik i n  the  more general case c4, (6 # 0 

are now, except f o r  the factor  p, t h e  quant i t ies  denoted by ( i k )  

(5 .5) .  
deal; one obtains 

JI 

The considerations made so far show t h a t  one may cancel a great  

e 

= a(, 1 + (1 - C2)2k1) 
11 

16 s = - p -  
22 4 kl 

and he nc e 

t h a t  is, 

7 - = 0.533(y)  tn 3/2 (1 - C 2 )  1 / 2 ( 1 - 1  52 - 54) 
E 50 1 - $2 

(8.7 '  1 

One can see t h a t  precisely as f o r  t he  closed cylinder t he  s i x t h  harmonic 
has no significance whatsoever, and t h a t  t he  difference compared t o  the  
special  oval 

the unimportant l a s t  correction term. For the  e l l i p s e - l i k e  ovals we 
considered especially,  the change means a very s l i g h t  increase of t he  
c r i t i c a l  values, since according t o  equation (4.9) t he  f ac to r  of t he  
correction term assumes i n  the  l imit ing case 25 = 1 t h e  

c2  = - 5 ,  54 = c2 = 0 consis ts  only i n  a modification of 

c 
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value 2.1 = 1.2 instead of 2 = 0.67 according t o  equation (4.5) .  

More important f o r  t he  comparison between equations (8 .7 ' )  and (8 .4 ' )  i s  
the  f a c t  t h a t  t he  fac tor  1 - C 2  f o r  equal 5-value i s  l a rge r  t h i s  t i m e .  

For, according t o  equation (4.9) ,  5, = -1.55, and i f  one would simulate 

the  oval s t i l l  more t o  an e l l i p s e  (compare p .  16), one would obtain 
coef f ic ien ts  s t i l l  somewhat la rger  (1.6 f o r  a curvature expression 
s t a r t i n g  from sin' '9 e t c . )  . 

1.75 1 .5  

7 

The physical significance of t h i s  i s  t h a t  among t h e  ovals of equal 
length 
s t i f f n e s s  increases with the  nonunifomity of t he  curvature var ia t ion.  
O f  course t h i s  appl ies  only i f  t he  spar supports the  point of minimum 
curvature.  If one places t h e  support a t  t he  ends of t he  la rge  ax i s  
(52 > 0), it becomes more and more ineffect ive with increasing "e l l i p -  
t i c i t y . "  W e  compare f o r  instance the  equations (6.9) and (8.7') with 
one another by subst i tut ing,  according t o  equation (4.9),  c2 and c4; 
i n  t he  extreme case 25 = 1 the  numerical fac tors  

U (and therewith of equal mean curvature l / R o )  t h e  buckling 

0.291 X 0.72 = 0.21 

0.533 d0.25 X 0.99 = 0.26 

fo r  the unsupported cylinder 

and for t he  supported cylinder 

result which now d i f f e r  only s l i gh t ly .  
by a curvature expression of  s t i l l  more terms ( thus with s t i l l  l a rge r  
(2 values),  the  numerical values approach one another s t i l l  more. 

If one in t ens i f i e s  the e l l i p t i c i t y  

If we again t u r n  from the  parameters appearing i n  equation (8.71) 
2b 
t 

U and 5 t o  - and E, we may write 

(8.8) 
7 = 1 . 5 E ( x )  t 312- $(E) 

with T( E) = ( ~ ' ( ( ) ) ~ / ~ ( l  - c ~ ) ~ / ' ( l  - - " - 'i) t h i s  time determined 
50 1 - c2 

from f igure  7. 
f igure  11 (dashed). Like t h e  curves JI pertaining t o  t h e  closed 
cylinder,  t h e  two curves 
very close together; t h a t  means tha t ,  as before i n  t h e  compression case, 
t h e  buckling load of t he  half  oval supported a t  t he  "long sides" i s  
almost not a t  a l l  dependent on the  exact form of t he  oval, but  only on 

t h e  two parameter values - and 2 = E. 

The r e s u l t  of the  calculat ion i s  a l so  p lo t t ed  i n  

q ( c )  f o r  the ovals (4.5) and (4.9) a l s o  l i e  

Since the  r e l a t ions  (8.4), 2b 
t a 
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( 8 . 7 ' ) ,  e tc . ,  a s  t h e  comparison of t h e  exact F l k g e  formula with 
formula ( 6 . 9 ' ) ,  contain (due t o  the  s implif icat ions made i n  the  i n i t i a l  
equations) p o s s i b i l i f i e s  of e r ro r  o f  an order of magnitude of 15 percent, 
it i s  suf f ic ien t  t o  replace the  two 
a l l  others possible)  by the  curve drawn so l id ly  i n  f igure  11. 
approximation curve has t h e  simple equation 

- 

3 curves found here (as well as 
This 

To repeat t h i s  formula, as t h e  result of t he  calculat ions of t h e  
two l a s t  sections,  once more: t he  simple r e l a t i o n  

- -  7 - -  3/2(3.1e - 1 . 3 ~ ~  - 0 . 3 )  
E 2 b  

i s  valid f o r  t h e  c r i t i c a l  shear load of t h e  i n f i n i t e l y  long s t a t i c a l l y  
supported half  oval.  It i s  so simple t h a t  it i s  not worth while t o  
represent it by a diagram. According t o  i t s  der ivat ion i t s  
range is l imited t o  the  region 12 6 2 l/3; however, most 

too large e r ro r s  w i l l  a r i s e  i f  it i s  applied f o r  t h e  region 
1 t o  6 k -. 
5 

The extraord 

9 .  "HE WING NOSE UNDER COMBINED SHEAR 

AND COMPIiESSIVE Lorn  

va l id i ty  
probably not 

1 

nary d ivers i ty  of t h e  buckling form makes t Impossible 
f o r  compression and shear buckling t o  "mix"; i n  case of an appropriate 
var ia t ion  i n  load t h e  one buckling form changes suddenly i n t o  t h e  other, 
t h a t  i s ,  t h e  curves f o r  t h e  c r i t i c a l  values i n  a u-, T-coordinate 
system show a break. 
be performed according t o  t h e  methods indicated i n  sect ion 5 shows t h a t  
t h e  c r i t i c a l  compressive load within very wide limits i s  changed not a t  
all by shear, whereas, as w e  s h a l l  now demonstrate, presence of  com- 
pression o r  tension influences t h e  c r i t i c a l  shear load. 

(Compare f i g .  12a.)  The ca lcu la t ion  which must 

We start from the  equation system ( 7 . 5 ) ,  thus consider f i r s t  again 
t h e  special  oval 
again t h e  form ( 7 . 6 ) ;  however, t h i s  time t h e  quant i t ies  s must be 

understood t o  s ign i fy  the  complete expressions (7 .4)  ( t h a t  is, with 
X # 0) .  
basical ly  change the  c r i t i c a l  behavior of t h e  cylinder, we may i n  t h e  

54 = $5 = . . . = 0. The f i r s t  approximation has 

i k  

Since the  presence of a s m a l l  compressive force i s  not able t o  . 
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. 
Vz region which i s  of i n t e re s t  f o r  the w i n g  nose again subs t i t u t e  

k, = -4 fi n 
P2 and obtain (compare a l so  (7.8)) 

For determining the  c r i t i c a l  values from 

Xkl may be omitted. Therewith the re  r e s u l t s  f o r  t h e  16 t he  small term 

c r i t i c a l  value of kl t he  value (7.7’) independent of h: 

p12 thus becomes: 

For the  p lo t t i ng  o f  CI against  X the tangent ia l  d i rec t ion  a t  t h e  
point X = 0 i s  of foremost importance; t he re  results f r o m t h e  simplifi- 
cat ion of (9.3) which i s  va l id  fo r  small X values: 

Exactly as i n  the  case of pure shear load a corresponding formula 
resu l t s ,  without considerably l a rge r  calculat ion expenditure, a l so  f o r  
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the  second approximation pertaining t o  the  system (7.5) .  
again from the  formula (8.1): 

One starts 

where one has 

B -  11 - 

s -  
22 - 

1 -  
2 , 2 S  '11'33 

5 1  4 1P22 81 Ell 18 S i3  1+--+-- 
25 s33 s33 

(9.4) 

t o  subs t i t u t e  f o r  sik 

The term s13 2/slls33 i n  t h e  numerator may be omitted, as we have 

seen above (p. 38). Then one obtains equation (9.4) i n  a readi ly  
surveyable form if one mul t ip l ies  throughout i n  the  numerator a n d  t h e  

denominator by 1 - - xl"1 
81 

(g 1 + (1 + c)2k1 - A)(& - $)(I - 2) 
2 = 9n2f32 (9 .4 ' )  

25 2 
45 

P I 1  4 
(1 - 2) + -$(l + (1 + [)*kl2 - Xkl) --(1 + 5)kl 

The posi t ion of t h e  minimum of this expression l i e s  again close t o  

If one subs t i tu tes  t h i s  value, one obtains 

(9.6) 
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c 

For the tangents a t  t he  point 
( compare a l so  equation (8.4) ) 

A. = 0 one obtains by s e r i e s  development 

o r  wr i t ten  i n  7 and u, with T ( h .  = 0) denoted as -ro 

- 0.263 - ' ] = T O E -  
1 + 5  

The formulas (9.6) t o  (9.6") are valid f o r  t he  special  oval (4.5).  The 
corresponding formulas f o r  t he  general oval (4 .1)  d i f f e r  from them by 
the  f a c t  t h a t  instead of 1 + [ one has t o  write 1 - C2 and t h a t  t h e  

very small correct ion term - 10 1 or  - 1 respectively,  

. I n  contains, instead of the second fraction, t he  quantity 

determining T it had been found tha t  these formal differences are 

almost completely compensated a t  t r a n s i t i o n  t o  t h e  two parameters 
and b/a, so that f o r  To the expression (8 .91)  which i s  independent 

of t he  oval form resul ted.  
replace t h e  fac tor  representing t h e  influence of t he  longi tudinal  force 

r; - t 
52 

243 1 + [ 501+5) 

0 

2b/t 

With s t i l l  better approximation one may 

by a "mean" fhnction independent of the oval form. I n  f igure 11 the  
function $+( E)  
The deviations a re  indeed so s l i g h t  t ha t  - i n  view of t he  simplified 
i n i t i a l  equations - it would be perfect ly  nonsensical t o  take t h e m  i n t o  
consideration. 

i s  drawn f o r  instance f o r  the  two ovals (4.3) and (4 .9) .  

I n  place of (9.6") we obtain 
a r b i t r a r y  ovals, f o r  t he  c r i t i c a l  
compressive or  t e n s i l e  forces ( a  

therefore the  formula, va l id  f o r  
shear i n  the  presence of small 
i s  as compression counted pos i t ive) :  
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On the bas i s  of t h e  formulas (9.8) ( f o r  s m a l l  X)  or, respective]-y, 
( 9 . 6 )  ( f o r  l a rge r  X values) one may sketch a diagram from which result 
t he  admissible c r i t i c a l  p a i r s  of values u, 7 .  I n  figure 12 a repre- 
sentation w a s  chosen which saves use of separate diagrams f o r  deter-  
mination of t h e  c r i t i c a l  loads T o ,  uo (everytime i n  t h e  absence of 

t he  o ther ) .  This is  possible because of two p e c u l i a r i t i e s  of t h e  .curves. 
The dependence of t h e  curve branches s t a r t i n g  from t h e  7-axis (shear 
with some compression) on the parameter 
factor  t h i s  parameter, as equation ( 8 . 9 ' )  shows, by se lec t ion  of t he  
eas i ly  calculated abscissa 

2b/t i s  such t h a t  one may 

z E ("y/' 2b 

The remaining one-parameter curve family i s  then numbered according t o  
the parameter E = b. The curve branches starting from t h e  a-axis 

(compression with some shear) cannot be transformed, i n  a s imilar ly  
simple manner, i n to  a one-parameter family dependent only on E ,  by 
select ion of a su i t ab le  ordinate.  Instead of t h i s ,  however, these 
curves are independent of  7, t h a t  is ,  they are horizontal  s t r a i g h t  
l i n e s  which need not be e x p l i c i t l y  drawn i n t o  t h e  diagram; both param- 
e t e r s  on which - i f  t h e  ordinate - ' - i s  selected - these "curve" 

E 2b 
branches depend can now be indicated by a simple method: one need only 
mark the  pertaining 
s t r a i g h t  l i n e  and the  other branch of t h e  a-, 7-curves numbered 
according t o  E. Connecting, i n  addition, t he  points of equal 2b/t 
values, one has on t h e  whole a diagram with two one-parmeter curve 
families from which one may read, without addi t ional  auxi l iary diagrams, 
the relat ions between the  four quant i t ies  6, 7, 2b/t, b/a which 
characterize the c r i t i c a l  s t a t e .  

a 

2b/t value at  t h e  in te rsec t ion  of t h e  horizontal  

For use of t h e  diagram (which of course i s  drawn only f o r  t h e  
2b/t region 50-1000 of t h e  parameter 

the following method r e su l t s :  b/a i s  known, t i s  selected,  2b/t 
determined. 
respective b/a with t h e  abscissa axis  represents t h e  per ta ining 
c r i t i c a l  To value i n  the absence of compression (formula ( 8 . 9 ' ) ) .  
For smaller 7 compression i s  permissible; it i s  read o f f  from t h e  
curves indexed b/a v e r t i c a l l y  above 7. If t h e  point comes t o  l i e  
i n  the  region covered by the dot-dashed curves, one must consider 
whether or  not compression alone produces i n s t a b i l i t y .  This i s  t he  
case when t h e  intersect ion of the curve indexed 

curve, since the piercing 2b comes t o  l i e  above the dot-dashed - -  t 
points of t h e  dot-dashed with t h e  b/a 

t h a t  i s  of p r a c t i c a l  i n t e r e s t )  

The point of intersect ion of t h e  curve pertaining t o  the  

b/a with t h e  normal 

curves indicate  the  c r i t i c a l  

. 

. 
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compression values i n  the  absence of shear. 
curves" a re  not reached, shear is  permissible. 
c l ea r  by an example 

Only i f  these " c r i t i c a l  
The method i s  bes t  made 

= 0.60 a 
- -  2b - 400 t 

i s  permissible CJ = 1.0: a compression - = 0.16 - 
E 2b 

(I 
2. 13''' = 0.94: a compression - = 0.29 - i s  permissible 

E t  E 2b 

2b 
t since the dot-dashed curve - = 400 l i e s  higher up; 

3. 7 ( E)3'2 = 0.80. One would  read off  - 0 = 0.57 but t h i s  
E t  E 2b 

0 value i s  not admissible, since a t  - = 0.34 &- l i e s  the  c r i t i c a l  value E 
f o r  compression alone. 

If the  permissible compressive and shear loads prescribed by the  
problem l i e  higher (lower) than the  c r i t i c a l  ones found from the diagram, 
the  reading must be repeated with a la rger  (smaller)  t value. 

10- VALIDITY LIMITS - UNSYMMETRICAL OVALS 

UNDER BENDIKG - SUMMARY 

The report  investigates the  s t a b i l i t y  of the  cy l indr ica l  s h e l l  of 
i n f i n i t e  length and variable curvature simply supported a t  the longi- 
tud ina l  edges i n  case of loading by longitudinal compression and shear. 
S ta r t ing  from the cylinder equations (2 .1)  which a re  reduced t o  the  
"essent ia l"  terms, the formulas a re  developed f i r s t  i n  such a general 
form t h a t  the calculat ion may be performed f o r  a s h e l l  of a rb i t r a ry  
curvature (representable by a Fourier polynomial) and of a rb i t r a ry  opening 
angle and then be numerically evaluated f o r  the  special  ovals (4.5),  
(4 .8) ,  and (4.9) with the  opening angle J[ ( w i n g  nose). It i s  found 
tha t  t he  s h e l l  under compression shows an en t i re ly  d i f fe ren t  behavior 
from t h a t  of the  circular-cyl indrical  s h e l l  ( t he  oval s h e l l  of equal 
mean curvature buckles very much ea r l i e r ) ,  t ha t ,  however, i n  case of 
shear loading - where almost axis-paral le l  wave c re s t s  or iginate  - the  
v a r i a b i l i t y  of the  curvature has only l i t t l e  e f f ec t .  Performance of 
t he  calculat ion i s  merely more troublesome i n  case of compression than 
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i n  case of shear, because the  equation system t o  be solved i n  the  param- 
e t e r  region of importance f o r  t he  wing nose converges there very much 
more slowly. On t h e  other hand, t h e  result i n  case of compression 
( f i g .  10) has a very much w i d e r  range of appl icat ion - since the  waves 
i n  longitudinal direct ion a re  short, t h e  results are, with good approxi- 
mation, v a l i d  a lso f o r  t he  cylinder of f i n i t e  length. For shear, i n  
contrast ,  presupposition of great  cylinder length i s  essent ia l  - i f ,  
due t o  t h e  transverse reinforcements, t h e  oblique waves can no longer 
go around without interference, a constraint  results which sometimes 
increases the  c r i t i c a l  load t o  a 1 n u l t i p l e . ~ 7  It i s  d i f f i c u l t  t o  t e l l  
by how much one may, however, assume t h a t  it amounts t o  l e s s  than f o r  
t he  c i r cu la r  cylinder because f o r  shortened longitudinal-wave length 
the  v a r i a b i l i t y  of curvature ( ins igni f icant  f o r  the cylinder of i n f i n i t e  
length) muet have a reducing effect ,  as i n  case of compression. Bes ides ,  
f o r  the breaking load one may count on a considerable reserve a l so  i n  
case of compression; noticeable buckling or iginates  a t  f i rs t  only i n  
the s l i gh t ly  curved par t ,  without much affect ing the strongly curved 
par t ,  so t h a t  a considerable amount of load may be sh i f t ed  t o  the  l a t t e r  
before the e n t i r e  s h e l l  collapses.  
curvature behaves similarly t o  a p l a t e  s t i f fened  by longitudinal supports 
above the buckling l i m i t . )  

(The s h e l l  of strongly variable 

The diagrams and formulas have been calculated under the  assump- 
t i o n  t h a t  t he  ovals are symmetrical t o  the  large axis,  t h a t  they show 
the opening angle 
sional load. However, they may be used a l so  when the  ovals a r e  unsym- 
metrical, have an opening angle d i f fe ren t  from n, and undergo bending 
with o r  without transverse force.  The investigations of sect ion .5 
(compare f i g .  9) have demonstrated t h a t  t he  two halves of t he  oval show 
almost no mutual influence across t h e  strongly curved nose. One ca l -  
culates, therefore, an unsymmetrical oval under compression by mirroring 
the  f l a t t e r  one of the two halves (as t h e  more endangered one) a t  t he  
large axis and taking the  dimensions of t h i s  subs t i t u t e  oval as a b a s i s  
f o r  t he  calculation. 'po # JI, one provides a n  
equivalent ha l f  oval by s l i g h t l y  modifying the  more endangered ha l f  of 
the "apexes" so t h a t  there  the tangent i s  v e r t i c a l  t o  t he  end tangent 
a t  the f l a t t e s t  place and mirrors t h e  thus or iginat ing quarter oval; 
t h i s  is, as an approximation, permissible, because the  region of smallest 
curvature i s  of foremost importance f o r  t h e  c r i t i c a l  behavior so that 
a s l i g h t  change i n  the region of grea tes t  curvature (which p r a c t i c a l l y  
remains unbuckled) cannot essent ia l ly  a f f e c t  that behavior. If, 
f ina l ly ,  the w i n g  nose does undergo, not pure compression (bending of 
t he  wing about the v e r t i c a l  ax i s ) ,  but bending about t he  large axis,  

17Compare the circular-cylinder results of Krom, Jahrbuch 1940 

'po = JI, and t h a t  they undergo compression o r  t o r -  

I f  t he  opening angle i s  

der deutschen Luftfahrtforschung, p. 1832. 

. 
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one mirrors t he  compressed half  and calculates t he  thus or ig ina t ing  oval 
as if t h e  maximum bending-compressive s t r e s s  were uniformly d is t r ibu ted .  
With t h i s  method, one i s  on the  safe side without ca lcu la t ing  very 

"8;8 
unfavorably: f o r  even f o r  t he  c i rcu lar  cylinder t h e  c r i t i c a l  bendi 
s t r e s s  i s  not very much higher than the c r i t i c a l  compressive stress, 
and f o r  t h e  oval t he  difference i s  a great deal s l i g h t e r  s t i l l ,  due t o  
the  width of t he  pressure zone (which is  moreover t h e  least curved). 

Transverse forces w i l l ,  i n  general, not a f f e c t  t h e  s t a b i l i t y  of 
t h e  w i n g  nose. 
ferred by t h e  w i n g  nose i s  smaller and, moreover, reaches i t s  maximum 
value i n  the  strongly curved portion, and horizontal  ones w i l l  not, 

generally not be la rge .  Therefore only t h e  to r s ion  remains as e s s e n t i a l  
shearing load. 
horizontal  axis, t he  diagram 12 serves f o r  the  half  under compression. 
For the  half  under tension (which sometimes, nevertheless, can be the  
more endangered one because it usually i s  the  f la t te r  h a l f )  we obta in  
from ( 8 . 9 )  and (9.5) the  approximation formula 

Vert ical  forces  w i l l  not do so because the  p a r t  trans- 

- because t h e  s t resses  i n  t h e  nose must change t h e  s ign  and thus can 

I n  case of combination of to rs ion  and bending about t h e  

i n  which 6, as tension, has t o  be inserted as pos i t ive .  The quan- 
t i t y  **(E) i s  taken from f igure  11 - f o r  rough calculat ions one may 
put ** = 1. 

W e  add a compilation of the  abbreviations and of t h e  end formulas 
important fo r  p rac t i ca l  use. (Compare a l so  f i g .  2.) 

U p = -  
1 

Abbreviations : 
(2.3) 

- '%lugge, 1ng.-Arch. 3, 1932, p.  501 f f .  
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For the half  cylinder U = Ron and thus 

Formulations : 

fo r  the curvature: 

I = L(l + 2C2' cos - 2ns + 
U R Ro 

fo r  the  unknowns w 
(a)  for  compression 

254 cos - 4ns  + . . . + 2C2r* COS 

U U 

A 

W 

J(X Y J  6 = 1 A, s i n  7 s i n  - 
A 

(b )  f o r  shear (closed she l l )  

m 

-00 I z (6.2) 

n ai 

@ => A, s i n  -(px U + ns) 
-W J 

( c )  f o r  shear ( she l l  segment) 
m m I 

nns I[X = an s i n  2 s i n  - + bn COS - s i n  - 
2 n=2,4,6 2 

n=l, 3,5 

m W 

ltX nn s n X  pj = 2_ % s i n  - sin- + E B, cos - s i n  - 
2 n=l, 3,3 2 n=2,4,6 

The c r i t i c a l  loads a re  represented as  functions of the  two param- 
e t e r s  2b/t and b/a (compare f i g .  1) i n  f igures  10 (pure compression) 

. 
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and 1 2  (shear and compression). 
can be given: 

For pure shear approximation formulas 

( a )  complete cylinder 

- = (5- t 3/2 (1.346 - 0 . 3 7 ~ ~  - 0.25) 
E 

(b)  half cylinder 

= (&)3'2(3.1~ - 1 . 3 ~ ~  - 0.3) 

Translation by Mary L. Mahler 
National Advisory Committee 
fo r  Aeronautic s 

( 6.9" 
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Figure 1.- Shell of variable curvature (wing nose). 
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Figure 2.- Shell segment with dimensions and coordinates. 
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Figure 3(a).- Curvature variation over the developed width for  two ovals 
of the type (4.5). 

B. 

. 



55 NGCA TM 1302 

- 
Figure 3(b).- Oval forms for  the curvature expression (4.5). 

. 
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Figure 7.- Expression (4.9). 
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For conversion of the parameter ( 
to E = b a (axis ratio) and E' = R, b = STJ (ratio between small 

axis and mean curvature radius), 
radii. 

R1, R2 a re  the apex curvature 
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Figure 8.- For determination of the zeros of the determinant (5.2) with the 
aid of Gauss’ dlgorism. Curvature expression (4.5); 2 5 = 0.5. 



NACA TM 1302 

- L 5  

:v 

c 



62 NACA TM 1302 

300X 10-4 

5 1 2oo 
E 

75 0 

100 

70 

so 
40 

3 0  

20 

10 

1 
50 70 700 150 200 300 400 500600 700 1000 

Figure 10.- Critical compressive s t r e s s  u as a function of the 
parameters 2b/t and b/a. 
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Figure 11.- Shear buckling, L = $(&) E 

(a) $ for the closed cylinder (oval forms, equations (4.5) and (4.9)). 

I# = 7 for the half cylinder (oval forms, equations (4.5) and (4.9)). 

Approximation q = I#, = 1 . 3 4 ~  - 0 . 4 3 7 ~ ~  - 0.25. 

Approximation $ =To = ( 3 . 1 ~  - 1 . 3 ~ ~  - 0.3). 
(b) 

(c) The factor $ *, decisive for the decrease by compression (oval forms, 
equations (4.5) and (4.9)). For rough calculations, Jr* = 1. 
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~~ ~~ 


